Unit 3 Guided Notes

Polynomial Functions

Standards: A.Apr.4, A.Apr.6, A.REI.11, A.SSE.2, F.BF.1b, F.BF.3, F.IF.4, F.IF.5, F.IF.6, F.IF.7c, F.IF.8, F.IF.9

Clio High School – Algebra 2A

Name: ______ Period: ______

Need help? Support is available!

- Miss Seitz's tutoring: See schedule in classroom
- Website with all videos and resources

I I

L

www.msseitz.weebly.com

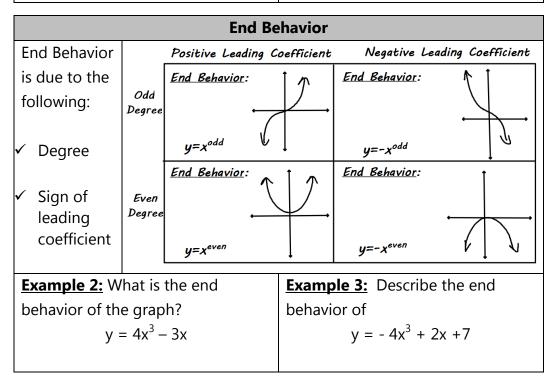
Miss Kari Seitz Text: 810.309.9504 Classroom: 810.591.1412 Email: kseitz@clioschools.org

Concept #	What we will be learning	Text
	Introduction to Polynomials	
#1	Tell whether an expression is a polynomial or not a polynomial	
	□ Identify end behavior from standard form of a polynomial	5.1
	List and explain the important parts of a graph or table such as; intervals where the function is increasing,	0.1
10.0	decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity	
	□ Sketch a graph given a verbal description.	
	Roots of Polynomials	
	Factor out a GCF	
#7	Identify roots of a polynomial from factored form	5.2
π	Make connection between roots, zeros, solutions, and x-intercepts	
	Make a rough sketch of the graph of a polynomial given roots and standard form	
	□ Change the form of an expression to identify key features such as slope, intercepts and end behavior	
	Transformation of Polynomials	
#2	Explain how k changes the graph depending on where k is and what number k is.	5.9
ΠJ	Find the value of k given graphs	5.5
	Compare properties of two functions represented in a different way	
	Operations on Polynomials	
# 1	I can simplify polynomial expressions	6.6
	I can multiply polynomials	0.0
	Put functions together using addition, subtraction, multiplication, and division	
<u></u> не	Solving Polynomials	
#5	□ Explain why the x-coordinates of the points where the graphs of two functions meet are solutions	5.3
	Dividing Polynomials	
	\Box Use the box method to divide a polynomial by (x-a).	
#6	□ Write the answer in the correct form with any remainder written over the (x-a).	F 4
ΠV	Determine if (x-a) is a factor of a polynomial	5.4
	Divide a polynomial by a polynomial of the same or lesser degree	
	Write the answer in the correct form with any remainder written over the bottom polynomial	
4 7	Using Polynomial Identities	CB
# (Show that the two sides of polynomial "formula" are equal	5.5
	Use the three polynomial "formulas" to explain numerical relationships	
	Polynomial Models in the Real World	
#8	 Explain properties of a real world situation from complex equations 	
	Relate the domain of a function to its graph	
	Identify the input values that make sense in a real-world situation	5.8
	Calculate the average rate of change of a function from an equation and/or table	
	Interpret and estimate the average rate of change of a function given a graph	

Introduction to Polynomials

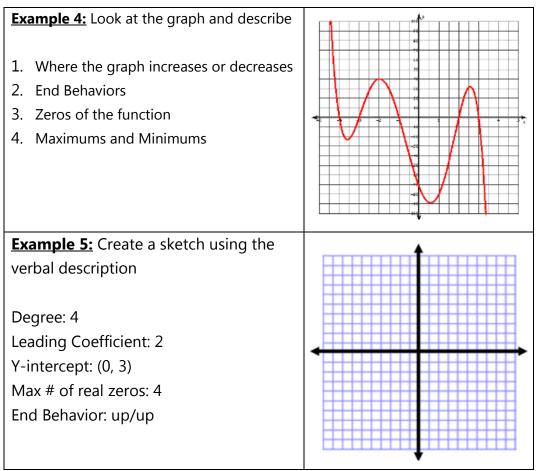
- $\hfill\square$ Tell whether an expression is a polynomial or not a polynomial
- □ Identify end behavior from standard form of a polynomial
- List and explain the important parts of a graph or table such as; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity
- \Box Sketch a graph given a verbal description.

Vocabulary: monomial, degree of a monomial, polynomial, degree of a polynomial, end behavior, algebraic expression, leading coefficient, relative maximum, relative minimum, standard form of a polynomial, symmetries

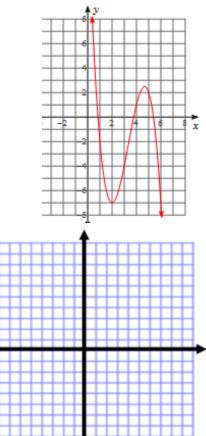

Degree of Monom	ials & Polynomials
A M is a real number, variable, or a product of a real number and one or more variables with whole number exponents.	The D of a MONOMIAL is the value of the exponent in the monomial. Example: $3x^5$ is degree 5.A
Example: 8, 5x, 3x ²	
P is a real number, variable, or a product of a real number and one or more variables with whole number exponents. Example: 5x, 6x + 3, 7x ² + 2x	The D of a POLYNOMIAL is the greatest degree among the monomial terms of the polynomials. (This value tells the maximum number of Z). Example: 7x ² + 2x is degree 2

STANDARD FORM of a Polynomial		
The S F	Example 1: Write in standard form.	
of a polynomials function arranges	$5x + 2 + x^2 - 6x^5$	
the terms by the D in		
DESCENDING numerical order.		

You Try It! Write the polynomial in standard form and state the degree of the polynomials


1.) $3x^3 + 2x^4 - 2x + 4x^2 + 1$ **2.)** $4n^5$

Definitions		
The L C is the coefficient of the variable with the highest degree.	The C T is the number without the variable.	
Example: $5x^3 + 2x$ Leading Coefficient: 5	Example: $-3x^7 + 1$ Constant term: 1	
The T P are the places where the graph changes direction.	The E B describes the direction of the graph as you move from left to right away from the origin	


You Try It! Describe the end behavior of each **3.)** $y = -7x^5 + 2x$ **4.)** $y = 2x^2 + 3x + 1$

Relative Maximums and Minimums			
A Relative M is the value of a function on an up to down turning point.	A Relative M is the value of a function on a down to up turning point.		
	Ant		

5.) Look at the graph and describe where the graph increases and decreases, and what the end behaviors, zeros, maximums and minimums are.

6.) Create a sketch

Degree: 3 Leading Coefficient: -1 y-intercept (0,2) Max. # real zeros: 3 End Behavior: UP/DN

Roots of Polynomials

- □ Factor out a GCF
- □ Identify roots of a polynomial from factored form
- □ Make connection between roots, zeros, solutions, and x-intercepts
- $\hfill\square$ Make a rough sketch of the graph of a polynomial given roots and standard form
- □ Change the form of an expression to identify key features such as slope, intercepts and end behavior

Vocabulary: factor, factored form, greatest common factor (GCF), roots, solutions, x-intercepts, zeros

Definitions				
The common factor of each term of an expression that has the greatest				
coefficient and the greatest exponen	t is called the			
GF	·			
Think biggest number and variab	le that all terms have in common			
FACTORED FORM is a polynomial written in the following form:				
GCF ()()				
For help with factoring, see	notes for Unit 2 Concept 3			
Example 1: Factor out the GCF of	Example 2: Put $x^3 - 2x^2 - 15x$ in			
$3x^3 + 6x^2 + 3x$	factored form			

Solving	J Polynomial	Equations by Factorin	ng
R, Z,	S	, and X	_ are any values
for x that make $f(x) =$	0.		
Example 3: Solve x ³ -	– 2x ² – 15x		
Factor out GCF			
Factor what's left			
Set each factor=0			

You Try It! Solve by factoring
1.)
$$y = x^3 + 3x^2 - 10x$$

2.) $y = x^4 - 8x^3 + 16x^2$

Graphing a Rough Sketch			
Example 4: $y = (x + 2)(x - 1)(x - 3)$			
Find the zeros			
(set each factor = 0)			
Pick points between			
each zero & plug			
into equation to find			
y-values			
Identify the end			
behavior			
Connect points and			
graph			
	<hr/>		
	+		

You Try It! Find the zeros of the function, then make a rough sketch.

3.) y = x (x - 2)(x + 5)

Transformations of Polynomials

 $\hfill\square$ Explain how k changes the graph depending on where k is and what number k is.

 \Box Find the value of k given graphs

 $\hfill\square$ Compare properties of two functions represented in a different way

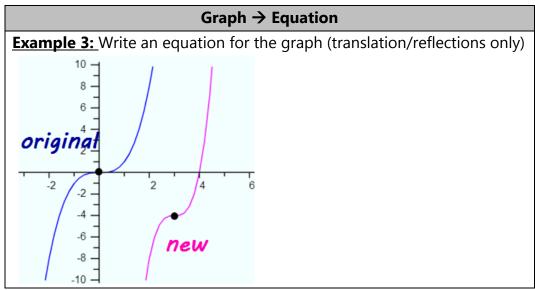
Vocabulary: even function, odd function, vertical shift, horizontal shift, vertical dilation, horizontal dilation, reflection

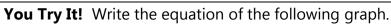
Definitions		
Horizontal Shift $f(x + k)$	Vertical Shift $f(x) + k$	
Shift left or right of the graph caused	Shift up or down of the graph caused	
by adding or subtracting a value to	by adding or subtracting a value to	
the x term in a function	the entire function	
Example: $y = (x - 3)^3$	Example: $y = (x - 3)^3 + 2$	
$y = (x+4)^3$	$y = (x+4)^3 - 3$	
Horizontal Dilation $f(k \cdot x)$	Vertical Dilation $k \cdot f(x)$	
Stretch or shrink of the graph caused	Stretch or shrink of the graph caused	
by multiplying onto the x term in a	by multiplying onto the entire	
function	function	
Example: $y = (\frac{1}{2}x - 3)^3$	Example: $y = \frac{1}{2}(x-3)^3$	
$y = (3x+4)^3$	$y = 3(x+4)^3$	
Reflection – f(x)		
Flip of the graph caused by a negative being multiplied to the function		
Example: $y = -2(3x + 4)^3$		

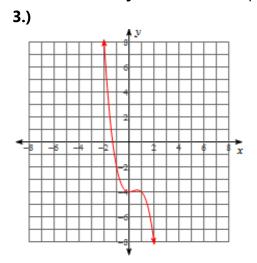
Verbal Description → Equation

Example 1: What is the equation of the graph of $y = x^3$ under a vertical compression by a factor of $\frac{1}{2}$ followed by a reflection over the x-axis, a horizontal translation of 3 units to the right and a vertical translation of 2 units up?

You Try It! Write the equation given the following description. **1.)** What is the equation of the graph $y = x^3$ under vertical stretch by factor of 4, horizontal translation 2 units right and vertical translation 2 units down.




Equation → Verbal Description


Example 2: How has the function $y = x^3$ been transformed?

$$y = -4(x + 6)^3 - 5$$

You Try It! Describe the transformation of $y = x^3$ **2.)** $y = -2(x - 3)^3 + 4$

Operations on Polynomials

□ I can simplify polynomial expressions

□ I can multiply polynomials

 $\hfill\square$ Put functions together using addition, subtraction, multiplication, and division

Vocabulary: box method, distributive property

Definitions		
LIKE TERMS are terms that share	Example 1: Combine like terms	
the same V	$9 - x^2 + 4x + 2x^3 - x + 5$	
with the same E		

Adding & Subtracting Polynomials		
Just combine like terms		
Example 2: $(2x^2 + x - 3) + (x - 1)$	Example 3: $(4x^3 + 2x^2 - 9) - (3x^2 + 4)$	
	Note: When you subtract distribute the -1	

Multiplying Polynomials Use the box method		
A) Put		
factors on		
outside of		
box		
B) Multiply		
to fill box		
C) Combine		
like terms		

You Try It! Perform the indicated operations **1.)** $(3x + 2x^4 - 5) + (2x - 1)$

2.)
$$(4x^3 - 3x + 9) - (2x^3 - 4)$$

3.) $(6x^4 - 3x^2 + 7)(3x + 8)$

Solving Polynomials

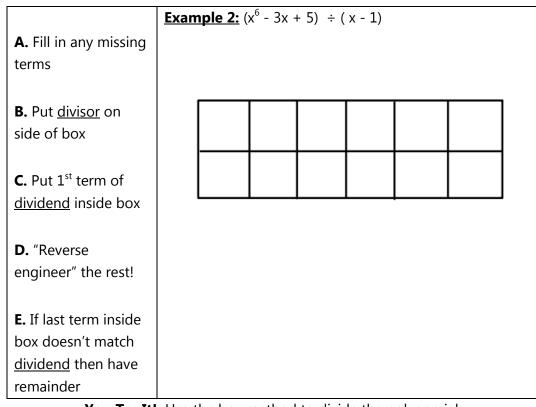
 \Box Explain why the x-coordinates of the points where the graphs of two functions meet are solutions Vocabulary: no new vocabulary

oulary	
	Solving Polynomials
	Factor out GCF, then factor or use Quadratic Formula
	help with factoring/solving by factoring, see notes for Unit 2 Concept 3 & 4***
	For help with the Quadratic Formula, see notes for Unit 2 Concept 6*
глашыв т	<u>1</u> : What are the real or imaginary solutions of the equation?
	$15x^4 - 20x^3 - 35x^2 = 0$
	• What are the real or imaginary solutions of the equation?
	<u>2</u>: What are the real or imaginary solutions of the equation?
	$6x^2 + 11x - 10 = 0$
Example 3	<u>3:</u> What are the real or imaginary solutions of the equation?
	$2x^3 - 5x^2 = 4x$

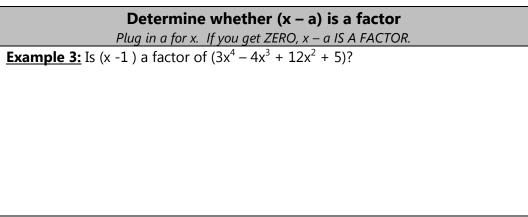
1.) $6x^2 + 13x - 5 = 0$

Dividing Polynomials

#6


□ Use the box method to divide a polynomial by (x-a).

- □ Write the answer in the correct form with any remainder written over the (x-a).
- Determine if (x-a) is a factor of a polynomial
- $\hfill\square$ Divide a polynomial by a polynomial of the same or lesser degree
- □ Write the answer in the correct form with any remainder written over the bottom polynomial


Vocabulary: dividend, divisor, quotient, remainder

Definitions				
DIVIDEND is the number you	DIVISOR is the number you divide			
divide I	В			
12 ÷ 5 = 2 R2	12 ÷ 5 = 2 R2			
QUOTIENT is the A	REMAINDER is what is L			
to a division problem	after you divide			
12 ÷ 5 = 2 R2	12 ÷ 5 = 2 R2			

Dividing Polynomials Use the Box Method						
	Example 1: $(4x^2 + 23x - 16) \div (x + 5)$					
A. Fill in any missing terms						
B. Put <u>divisor</u> on side of box						
C. Put 1 st term of <u>dividend</u> inside box						
D. "Reverse engineer" the rest!						
E. If last term inside box doesn't match <u>dividend</u> then have remainder						

You Try It! Use the box method to divide the polynomial **1.)** Use polynomial division to divide $3x^2 - 29x + 56$ by x - 7. What is the quotient and remainder?

You Try It! 2) Is (x + 1) a factor of (x³ + 4x² + x - 6) ?

#	7
	- C

Using Polynomial Identities

□ Show that the two sides of polynomial "formula" are equal

□ Use the three polynomial "formulas" to explain numerical relationships

Vocabulary: numerical relationship, identity

	Difference of Squares
Polynomial Identities	$a^2 - b^2 = (a + b)(a - b)$
Difference of Squares	Example 1: x ² - 81
Sum of Cubes	
Differences of Cubes	
<u>How to Find</u>Identify "a" and "b"Look for pattern	
Sum of Cubes	Differences of Cubes
$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$	$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$
<u>Example 2:</u> x ³ + 27	<u>Example 3:</u> x ³ – 216

You Try It! Use the polynomial identities to factor each expression 1) $x^2 - 25$

2) x³ + 64

Polynomial Models in the Real Wor	d
--	---


- $\hfill\square$ Explain properties of a real world situation from complex equations
- $\hfill\square$ Relate the domain of a function to its graph

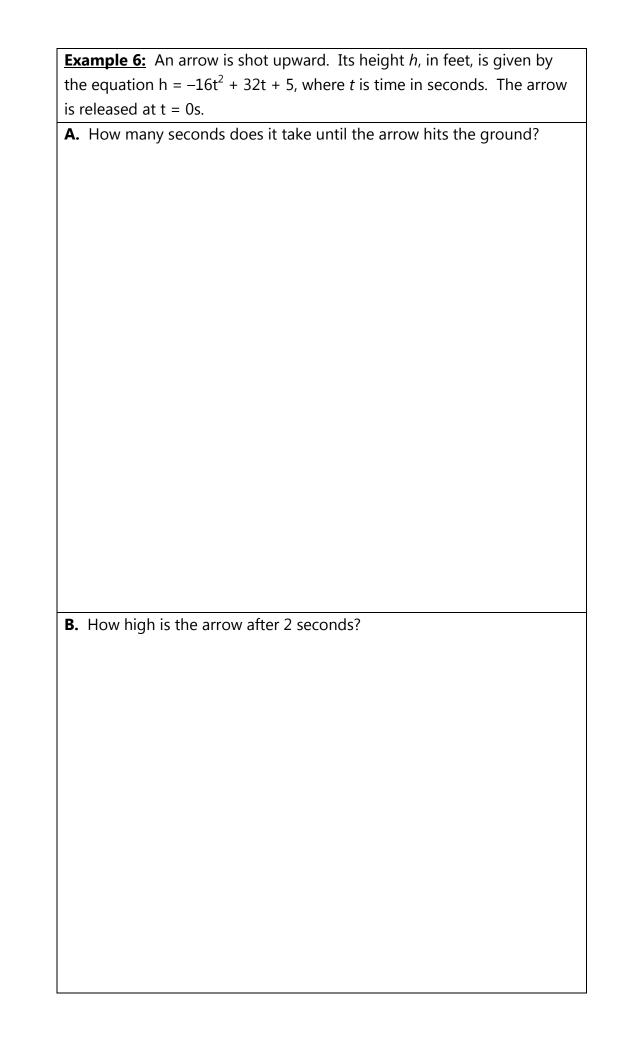
#8

- $\hfill\square$ Identify the input values that make sense in a real-world situation
- $\hfill\square$ Calculate the average rate of change of a function from an equation and/or table
- $\hfill\square$ Interpret and estimate the average rate of change of a function given a graph
- Vocabulary: domain, rate of change, slope, interval

Example 1: Write a variable expression in both factored form and standard form for the area of a square whose side is x + 8

Example 2: You can represent volume with a cubic function. If you start with a rectangular piece of cardboard, cut out a square from each corner, and then fold up the sides, you will have an open top rectangular solid.

A. If you start with an 8.5 in. by 11 in. piece of cardboard, what is the length, width and height of the rectangular solid if you cut out a 1 in. by 1 in. square from each corner?


B. What is the volume of the box?

C. If you cut an x in. by x in. square from each corner, what is a general equation for the volume of the rectangular solid? Write this in both factored form and standard form?

Example 3: A section of a bridge can be modeled by the function $f(x) = x^2 - 21x + 98$. Support beams for this bridge will be placed at one of the zeros. What are the possible locations for the support beams?

Example 4: The dimensions of a window are 2x + 10 and x + 3. What is the perimeter of the window?

Example 5: The expression $V(x) = x^3 - 13x + 12$ represents the volume of a rectangular safe in cubic feet. The length of the safe is (x + 4). What linear expressions with integer coefficients could represent the other dimensions of the safe? Assume that the height is greater than the width.

