Unit 1 Guided Notes

Functions, Equations, and Graphs

Standards: A.Ced.2, A.Ced.3, A.rei.11, A.SSE.1, F.bF.1, f.BF.3, F.If.7, F.IF.8, F.IF.

Clio High School - Algebra 2A

Need help? Support is available!

- Miss Seitz's tutoring: Thursdays after school
- Website with all videos and resources www.msseitz.weebly.com

Miss Kari Seitz
Text: 810.309.9504
Classroom: 810.591.1412
Email: kseitz@clioschools.org

Concept \#	What we will be learning...	Text
	Introduction to Functions Compare properties of two functions each represented in different ways	2.1
42	Linear Functions in Slope-Intercept Form Write linear equations in slope-intercept form Draw a graph of an equation	2.3
\#3	More About Linear Functions \square Manipulate an expression in order to reveal and explain different properties Change the value of part of an expression and analyze how it changes the whole expression	2.4
\#4	Graphing Linear Equations Create appropriate axes with labels and scales with given information Draw a graph of an equation	$\begin{aligned} & 2.3 \\ & 2.4 \end{aligned}$
\#5	Piecewise Functions Graph piecewise functions Write equations of piecewise functions	$\begin{aligned} & C B \\ & 2.4 \end{aligned}$
\#6	Absolute Value Functions and Step Functions Graph absolute value and step functions	2.7
$\text { \# } \psi^{7}$	Transformations of Graphs Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative) Find the value of k given the graphs Recognize even and odd functions from their graphs and algebraic expressions	2.6
\#8	Analyzing Linear Models Interpret parts of an expression in real-world context Write a function that describes a relationship between two quantities	2.5
\#	Linear Programming Represent constraints by equations or inequalities, and by systems of inequalities/equations Interpret solutions as viable or non-viable options in a modeling context	3.4

Definitions

A F \qquad is a relation in which each element in the domain corresponds to exactly one element in the range. This is also called a 0 \qquad T \qquad 0 \qquad relationship

D \qquad is all possible x-values of a function
R \qquad is all possible y-values of a function

Is Each a Function?				
Example 1: Is each of the following a function?				
A.				
B.				

You Try It! Is each a function?
1.) $\{(1,3),(2,-5),(3,-13)\}$
2.)

x	1	4	2	1
y	0	5	7	3

Finding Domain and Range

Example 2: What is the domain and range of the function?
Domain Range

You Try It! What is the domain and range of the function?
3.) $\{(1,3),(2,-5),(3,-13)\}$
4.)

x	1	4	2	1
y	0	5	7	3

| $f(x)=\ldots \quad$Function Notation
 It's just another way to write ___ ! |
| :--- | :--- |
| Example 3: Given $f(x)=-4 x+1$, Find the value of $f(-2)$ |
| To evaluate a given
 function at a
 particular value,
 P___ in the
 V_ for the
 V_ and
 do the
 C__ |

You Try It!

5.) Given $f(x)=3 x-5$, Find the value of $f(6)$
$\left.\begin{array}{|l|ll|}\hline & \text { Linear Functions in Slope-Intercept Form } & \text { Text: } \mathbf{2 . 3} \\ \square \text { Write linear equations in slope-intercept form } \\ \square \text { Draw a graph of an equation } \\ \text { Vocabulary: linear function, slope, slope - intercept form, y-intercept }\end{array}\right]$

	Definitions
A $\mathbf{L} \ldots$	
a straight line	

Finding Slope Given Two Points

Example 2: Find the slope of the line between $(-3,7)$ and $(-2,4)$.

You Try It! Find the slope of the line with the given points.
1.) Line A from Example 1 (hint: pick two points on the line)
2.) Between $(2,5)$ and $(1,8)$

Slope-Intercept Form

The Slope-Intercept Form of an equation of a line is $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{b}$, where \boldsymbol{m} is the slope of the line and $(0, \boldsymbol{b})$ is the y-intercept.

Example 3: Graph $y=-2 x+1$
Steps:

1. Plot the y-intercept
2. Use the slope (rise/run)
3. Draw a line through the two points

You Try It! Graph the equation
3.) Graph $y=1 / 2 x-4$

More about Linear Functions
Text: 2.4
Manipulate an expression in order to reveal and explain different properties
\square Change the value of part of an expression and analyze how it changes the whole expression Vocabulary: point-slope form, standard form, parallel, perpendicular

Point-Slope Form	
The equation of a line in Point-Slope Form through point $\left(x_{1}, y_{1}\right)$ with slope $m$$y-y_{1}=m\left(x-x_{1}\right)$	
Derive Point-Slope Form: $m=\frac{y-y_{1}}{x-x_{1}}$	Example 1: A line passes through $(-5,2)$ and has slope $3 / 4$. Write an equation for this line.

Standard Form

The equation of a line in Standard Form is $\boldsymbol{A x}+\boldsymbol{B y}=\boldsymbol{C}$, where A, B, and C are real numbers, A is not negative, and A and B are not both zero.

Example 2: Write the equation of the line $y=\frac{3}{4} x-5$ in standard form.

Writing Equations of Lines Summary		
Slope-Intercept Form $y=m x+b$	Point-Slope Form $y-y_{1}=m\left(x-x_{1}\right)$	Standard Form $A x+B y=C$
Use this form when you know the \qquad and the y -	Use this form when you know the \qquad and a \qquad or when you know two p \qquad	$A, B \& C$ are real numbers A is positive A \& B cannot both be zero

Example 3: A line goes through	Standard Form:
$(3,1)$ and $(4,2)$. Find the equation	
of the line in ALL THREE FORMS!	
Point-Slope Form:	
	Slope-Intercept Form:

Parallel Lines

Parallel Lines have the same s \qquad but different y - \qquad .

Example 4: Write the equation of the line parallel to the line $4 x+2 y=7$ through (4, -2)
Steps:

1. Put the original equation in

Slope-Intercept Form
2. Write the new equation in

Point-Slope Form using m
from the original equation
and the given point
3. Put in Slope-Intercept Form

Perpendicular Lines

Perpendicular Lines have o \qquad r \qquad S \qquad .

Example 5: Write the equation of the line perpendicular to the line $y=\frac{2}{3} x-1$ through $(0,6)$
Steps: Old Slope: New Slope:

1. Find the new slope
2. Write the new equation in

Point-Slope Form using your
new m and the given point
3. Put in Slope-Intercept Form

You Try It! Write the equation of each in Slope-Intercept Form.

1.) Parallel to $y=1 / 3 x-6$ through $(-1,6)$
2.) Perpendicular to $y=2 x+5$ through (1,4)

Graphing Linear Equations
Text: 2.3-2.4
\square Create appropriate axes with labels and scales with given information
Draw a graph of an equation
Vocabulary: intercepts

Graphing a Line Using Slope-Intercept Form

Example 2: Graph $y=1 / 2 x+3$
Steps:

1. Identify the slope and y-intercept
2. Plot the y-intercept on the graph
3. Use the slope (rise/run) to find the next point
4. Connect the points

Graphing a Line Using Point-Slope Form

Example 3: Graph y-4 = 3(x+2)
Steps:

1. Identify the slope and point
($\mathrm{x}_{1}, \mathrm{y}_{1}$)
2. Plot $\left(x_{1}, y_{1}\right)$
3. Use the slope (rise/run) to
find the next point
4. Connect the points

Graphing a Line Using Standard Form (Using Intercepts)
Example 4: Graph $3 x+2 y=12$

1. Set $x=0$ to find
the y-intercept
2. Set $y=0$ to find
the x-intercept
3. Plot the intercepts
4. Connect the points

Graphing a Piecewise Function							
*** REMINDER ***							
When you have < or >, you will have an \mathbf{O} \qquad C \qquad at the point							
Example 1: Graph$f(x)=\{2 x+1 \text { if } x<0$							
$f(x)=\left\{\begin{array}{l}2 x+1 \text { if } x<0 \\ 2 x-1 \text { if } x \geq 0\end{array}\right.$							
Steps:							
1. Draw boundary lines at the							
"breaks"							
2. Graph the function for the							
first interval ($2 x+1$ if $x<0)$							
\checkmark Open or closed circle?							
3. Graph the function for the							
second interval ($2 x-1$ if $x \geq 0$)							
\checkmark Open or closed circle?							
*** For help with graphing equat		notes	for Un	nit 1	Conc	ncept 4	4***

You Try It! Graph the following functions
1.) $f(x)= \begin{cases}3 x+1 \text { if } x<-1 \\ x-3 \text { if } x \geq-1 & \text { 2.) } f(x)=\left\{\begin{array}{c}x+1 \text { if } x<1 \\ -2 x+4 \text { if } x \geq 1\end{array} ~\right.\end{cases}$

Writing a Piecewise Function

Example 2: Write the equation for the piecewise function below
Steps:

1. Find your intervals
$\checkmark 1^{\text {st }}$ interval:
$\checkmark \quad 2^{\text {nd }}$ interval:
$\checkmark 3^{\text {rd }}$ interval:
2. Pick two points on each interval. Use them to find the slope of the line.
3. Use one of the points and the slope to write the equation of the line in Point-Slope Form

4. Change to Slope-Intercept Form

Work for 1 ${ }^{\text {st }}$ Interval:	Work for 2 ${ }^{\text {nd }}$ Interval	Work for 3 ${ }^{\text {rd }}$ Interval:

Equation:

You Try It! Write the equation of the piecewise function below

Absolute Value Functions and Step Functions
Text: 2.7
\square Graph absolute value and step functions
Vocabulary: absolute value, even function, odd function, step function, ceiling function, floor function

Example 1: Use a table of values to help graph the function $f(x)=-2|x|$

\mathbf{x}	$\mathbf{- 2 \| x \|}$	\mathbf{y}
-3		
-2		
-1		
0		
1		
2		
3		

Domain: \qquad

Range: \qquad

Even and Odd Functions	
An E \qquad F \qquad is symmetric about the y - axis.	An 0 \qquad F \qquad is symmetric about the origin (it looks the same if it's flipped over the x-axis and then the y-axis)
Example 2: Even or odd?	Example 3: Even or odd?

Step Functions

A step function is a function whose graph looks like a bunch of steps. The most common step functions are the \mathbf{F} \qquad F \qquad and the \mathbf{C} F \qquad _.
The Floor Function takes whatever \quad Example 4: What is the floor number you put in for x and rounds it of each number?

D \qquad to the nearest integer.

The Ceiling Function takes whatever number you put in for x and rounds it
\qquad to the nearest integer.

The Ceiling Function is written $f(x)=\lceil x\rceil$
-1.1
0

2.9

3

You Try It! Evaluate each
1.) $\lfloor-2.0001\rfloor$
2.) $\lceil 2.0001\rceil$
\square Identify the effect on the grap (both positive and negative)
\square Find the value of k given the graphsRecognize even and odd functions from their graphs and algebraic expressions Vocabulary: vertical translation, horizontal translation, vertical stretch/compression, reflection

Transformations of $\mathbf{f}(\mathbf{x})$	
Vertical Translations (shifts) Translation up k units $y=f(x)+k$ Translation down k units $y=f(x)-k$	Example: $f(x)=\|x\|+4$ shifts 4 units \qquad $f(x)=x-6$ shifts 6 units \qquad
Horizontal Translations (shifts) Translation right h units $y=f(x-h)$ Translation left h units $y=f(x+h)$	Example: $f(x)=(x+3)$ shifts 3 units to the \qquad $f(x)=\|x-5\|$ shifts 5 units to the
Vertical Stretches and Compressions/Shrinks Vertical Stretch, $\mathrm{a}>1$ $y=a \cdot f(x)$ Vertical Compression (shrink), $0<a<1$ $y=a \cdot f(x)$	Example: $f(x)=3 x$ \qquad the graph by a factor of 3 $f(x)=1 / 4 x$ \qquad or \qquad the graph by a factor of $1 / 4$.
Reflections (flips) In the x-axis $y=-f(x)$ In the y-axis $y=f(-x)$	Example: $f(x)=-\|x+5\|$ Flip about the \qquad -axis occurs if the E \qquad F \qquad is made negative. $f(x)=-\|x\|+5$ Flip about the \qquad -axis occurs if 0 \qquad \qquad is made negative.

Describing Transformations

Example 1: Describe how the parent function $f(x)=|x|$ must be changed to graph the function $y=2|x-1|+3$

What has changed?
$\checkmark 2$ is being \qquad
$\checkmark-1$ is being \qquad
$\checkmark \quad 3$ is being \qquad

So what happens to the graph?
\qquad
\checkmark \qquad
\checkmark \qquad

Identifying the Transformation Given the Graph

Example 2: Write the equation of the new function

Steps:

1. Identify what has changed
2. Write the equation

Parent Function: $\mathrm{y}=\sqrt{x}$ (pink is new function)

Example 3: Write the equation of the new function
When it's Stretched/Shrunk:

To find the value of the multiplier, we need to create and solve an equation using the parent function Pick a point on the new graph and plug in the x and y coordinates to our new equation. We will use this to solve for our unknown, \mathbf{u}.

$$
y=\mathbf{u} x^{2}
$$

Parent Function: $y=x^{2}$
(pink is new function)
\square Write a function that describes the relationship between two quantities

Definitions		
A C___ is the number in front of the variable.		
Example 1: Name the coefficients of the following:		
$y=3 x+2$	$\mathbf{4 x - 2 y = 1 0}$	$y=4 x-2$
Coefficient of X :	Coefficient of X :	Coefficient of X :
Coefficient of Y :	Coefficient of Y :	Coefficient of Y :

Writing Functions to Describe Relationships

Example 2: Write an equation for the situation. Phillip bought a roll of raffle tickets for $\$ 10$. He will be selling 50-50 raffle tickets for $\$ 1$ each. How much money, \mathbf{m}, will he make if he sells \mathbf{t} tickets?

Given:	Find:

Example 3: The number of boxes, \mathbf{b}, in a warehouse is given by the equation $\mathbf{b}=\mathbf{1 0 0 d}+\mathbf{8 0 0}$ where \mathbf{d} represents the number of days gone by. What do the coefficients in the equation represent?
\checkmark What does the 100 mean?
\checkmark What does the 800 mean?

You Try It! Write an equation for each situation
1.) Shelly wants to buy Legos. She is told the cost, \mathbf{c}, will be $\mathbf{c}=\mathbf{7 . 3 5 p}+\mathbf{5}$ where \mathbf{p} represents the weight of her Lego purchase in pounds.
a. What does the number 7.35 represent?
b. What might the number 5 represent?
2.) Yahn is climbing a rope. His height, h, above the ground is given by the equation $h=10 t+2$ where t represents time measured in minutes and h is measured in feet.
a. What does the number 10 represent?
b. What does the number 2 represent?

Linear Programming
Text: 3.4Represent constraints by equation or inequalities, and by systems of equations/inequalities Interpret solutions as viable or nonviable options in a modeling context Vocabulary: constraint, viable solution, nonviable solution

Definitions	
A C__ is a factor which restricts a system	
Example 1: List all constraints.	Example 2: List all constraints.
For your rock collection display, you want to have at most 25 samples. You want to have at least three times as many sedimentary samples as metamorphic samples.	An exam has two sections; a multiple choice section and an essay section. You can score a maximum of 100 points. You must get at least 65 points on the essay to pass the course.

You Try It! Identify all constraints
1.) Suppose you are buying two kinds of notebooks. A spiral notebook costs $\$ 2$ and a 3 -ring binder costs $\$ 5$. You must have at least 6 notebooks. The cost of notebooks can be no more than $\$ 20$.

Checking for Viability		
A \mathbf{V} which does not violate any constraints of a system	is \mathbf{N} which violates a constraint of a system Example 3: Given a list of constraints, tell whether a given solution is viable or not. If not, identify the constraint(s) which is/are not met	
Constraints: $-4 x+7 y \geq 21 ; 3 x+7 y \leq 28$ Solution: $(2,3)$		

You Try It! Given a list of constraints, tell whether a given solution is viable or not. If not, identify the constraint(s) which is/are not met
2.) Constraints: $-4 x+7 y \geq 21$;

$$
3 x+7 y \leq 28
$$

Solution: (0, 4)
3.) Is the solution $(3,1)$ viable with the following Constraints: $x \leq 3, y \leq 5, x+y \geq 1$

