Unit 1 Guided Notes

Functions, Equations, and Graphs

Standards: A.CED.2, A.CED.3, A.REI.11, A.SSE.1, F.BF.1, F.BF.3, F.IF.7, F.IF.8, F.IF.

Clio High School – Algebra 2A

Name: ___

•

Period: _____

Need help? Support is available!

- Miss Seitz's tutoring: Thursdays after school •
 - Website with all videos and resources

www.msseitz.weebly.com

Miss Kari Seitz **Text:** 810.309.9504 **Classroom:** 810.591.1412 Email: kseitz@clioschools.org

Concept #	What we will be learning	Text		
#4	Introduction to Functions	2.1		
#1	Compare properties of two functions each represented in different ways	2.1		
	Linear Functions in Slope-Intercept Form			
#2	Write linear equations in slope-intercept form	2.3		
	Draw a graph of an equation			
	More About Linear Functions			
#3	Manipulate an expression in order to reveal and explain different properties	2.4		
	□ Change the value of part of an expression and analyze how it changes the whole expression			
	Graphing Linear Equations	2.3		
#4	\Box Create appropriate axes with labels and scales with given information	2.3		
	Draw a graph of an equation	2.7		
#5	Piecewise Functions	СВ		
	Graph piecewise functions	2.4		
	Write equations of piecewise functions	2.4		
#6	Absolute Value Functions and Step Functions	2.7		
# U	Graph absolute value and step functions	2.7		
	Transformations of Graphs			
	\Box Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for			
#7	specific values of k (both positive and negative)	2.6		
- N	\Box Find the value of k given the graphs			
	Recognize even and odd functions from their graphs and algebraic expressions			
40	Analyzing Linear Models			
#8	Interpret parts of an expression in real-world context	2.5		
	Write a function that describes a relationship between two quantities			
#9	Linear Programming			
ΠJ	□ Represent constraints by equations or inequalities, and by systems of inequalities/equations	3.4		
	Interpret solutions as viable or non-viable options in a modeling context			

Introduction to Functions

□ Compare properties of two functions each represented in different ways Vocabulary: function, domain, range, function notation

Definitions	
A F is a relation in which each element in the domain	
corresponds to exactly one element in the range. This is also called a	
D T O relationship	
D is all possible x-values of a function	
R is all possible y-values of a function	

Four Ways to Represent a Function				
1.) Mapping Diagram				
2 4 -8 0 1 5 3 1 Domain Range	elem	apping diagram shows a function if each ent of the D maps to one element of the R		
	if ON	apping diagram <i>does NOT show a function</i> IE element of the D maps to T O Range.		
2.) Ordered Pairs				
{(2, 4), (-8, 0), (1, 5), (3 {(2, 4), (-8, 0), (1, 5), (1		Ordered pairs <i>show a function</i> if the DVDO NOT R Ordered pairs <i>do NOT show a function</i> if the DV		
		R		

You Try It! Is each a function?

1.) { (1, 3), (2, -5), (3, -13) }

You Try It! What is the domain and range of the function?

3.) { (1, 3), (2, -5), (3, -13) }	4.)					
		х	1	4	2	1
	_	у	0	5	2 7	3

	Function Notation
f(x) =	It's just another way to write!
Example 3: Given f(x) =	= $-4x + 1$, Find the value of f(-2)
To evaluate a given	
function at a	
particular value,	
P in the	
V for the	
V and	
do the	
C!	

You Try It!

5.) Given f(x) = 3x - 5, Find the value of f(6)

Linear Functions in Slope-Intercept Form

Write linear equations in slope-intercept form
 Draw a graph of an equation
 Vocabulary: linear function, slope, slope – intercept form, y-intercept

Finding Slope Given Two Points

Example 2: Find the slope of the line between (-3, 7) and (-2, 4).

You Try It! Find the slope of the line with the given points.
1.) Line A from Example 1 (hint: pick 2.) Between (2, 5) and (1, 8) two points on the line)

Slope-Intercept Form								
The Slope-Intercept Form of an equation of a line is y = mx + b , where								
\boldsymbol{m} is the slope of the line and (0, \boldsymbol{b}) is the y-intercept.								
Example 3: Graph $y = -2x + 1$								
<u>Steps:</u>	[T	T	TT			1	11
1. Plot the y-intercept			+			-		
2. Use the slope (rise/run)	-		+					Ξ,
3. Draw a line through the two points								
	L				Ļ	<u> </u>	Lt.	

3.) Graph $y = \frac{1}{2}x - 4$

More about Linear Functions

□ Manipulate an expression in order to reveal and explain different properties

□ Change the value of part of an expression and analyze how it changes the whole expression

Vocabulary: point-slope form, standard form, parallel, perpendicular

Point-Slope Form					
The equation of a line in Point-Slope Form through point (x_1, y_1) with slope m					
$y-y_1=m(x-x_1)$					
Derive Point-Slope Form: Example 1: A line passes through					
$m = \frac{y - y_1}{y_1}$	(-5, 2) and has slope 3/4. Write an				
$m = \mathbf{x} - \mathbf{x}_1$	equation for this line.				

Standard Form
The equation of a line in Standard Form is Ax + By = C , where A, B, and
C are real numbers, A is not negative, and A and B are not both zero.
Example 2: Write the equation of the line $y = \frac{3}{4}x - 5$ in standard form.

Writing Equations of Lines Summary					
Slope-Intercept Form	Point-Slope Form	Standard Form			
y = mx + b	$y - y_1 = m(x - x_1)$	Ax + By = C			
Use this form when	Use this form when	A, B & C are real			
you know the	you know the	numbers			
s and the y-	s and a	A is positive			
·	p or when	A & B cannot both be			
	you know two	zero			
	p				

Standard Form:
Slope-Intercept Form:

Parallel Lines have the same s, but different y Example 4: Write the equation of the line parallel to the line 4x + 2y = 7 through (4, -2) <u>Steps:</u> 1. Put the original equation in Slope-Intercept Form 2. Write the new equation in
through (4, -2) <u>Steps:</u> 1. Put the original equation in Slope-Intercept Form
<u>Steps:</u> 1. Put the original equation in Slope-Intercept Form
1. Put the original equation in Slope-Intercept Form
Slope-Intercept Form
· · ·
2 Write the new equation in
2 Write the new equation in
Point-Slope Form using <i>m</i>
from the original equation
and the given point

Perpe	endicular Lines				
Perpendicular Lines have o	r				
	[_]				
S					
Example 5: Write the equation	of the line perpendicul	ar to the line			
$y = \frac{2}{3}x - 1$ through (0, 6)					
<u>Steps:</u>	<u>Old Slope:</u>	New Slope:			
1. Find the new slope					
2. Write the new equation in					
Point-Slope Form using your					
new m and the given point					
3. Put in Slope-Intercept Form					

You Try It! Write the equation of each in Slope-Intercept Form.

1.) Parallel to y = 1/3x - 6 through (-1, 6)

2.) Perpendicular to y = 2x + 5 through (1, 4)

Graphing Linear Equations

□ Create appropriate axes with labels and scales with given information

 $\hfill\square$ Draw a graph of an equation

Vocabulary: intercepts

Piecewise Functions

Graph piecewise functions
 Write equations of piecewise functions
 Vocabulary: piecewise function

Definitions A P_____F____ is a function which is defined by sub-functions that each applies to a specific part of the domain. So the graph is broken into "pieces". Hence the name!

Graphing a Piecewise Function			
*** REMINDER ***	*		
When you have < or >, you will have an O	C	at the point	
When you have \leq or \geq , you will have a C	C	at the point	
Example 1: Graph		`	
$f(x) = \begin{cases} 2x + 1 & \text{if } x < 0\\ 2x - 1 & \text{if } x \ge 0 \end{cases}$			
Steps:			
1. Draw boundary lines at the			
"breaks"			
2. Graph the function for the			
first interval $(2x + 1 \text{ if } x < 0)$			
✓ Open or closed circle?			
3. Graph the function for the			
second interval $(2x - 1 \text{ if } x \ge 0)$	· · · · · ·		
✓ Open or closed circle?			
*** For help with graphing equations, see not	tes for Unit	1 Concept 4***	

You Try It! Graph the following functions

Absolute Value Functions and Step Functions

□ Graph absolute value and step functions

#6

Even and Odd Functions			
An E is symmetric about the y – axis.	An O F is symmetric about the origin (it looks the same if it's flipped over the x-axis and then the y-axis)		
Example 2: Even or odd?	Example 3: Even or odd? $ \frac{4^{4}}{y_{2}} $		

Step Functio	ns		
A step function is a function whose graph looks like a bunch of steps.			
The most common step functions are the F F			
the C .			
The Floor Function takes whatever	Example 4: What is the floor		
number you put in for x and rounds it	of each number?		
D to the nearest integer .			
The Floor Function is written $f(x) = \lfloor x \rfloor$	-1.1		
<i>Y</i> ↑	0		
·	1.01		
	2.9		
	3		
The Ceiling Function takes whatever	Example 5: What is the		
number you put in for x and rounds it	ceiling of each number?		
U to the nearest integer .			
53	-1.1		
The Ceiling Function is written f(x) =	0		
<i>y</i> *	1.01		
	2.9		
x	3		

You Try It! Evaluate each

1.) <u>-2.0001</u>

2.)

Transformations of Graphs

- \Box Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative)
- \Box Find the value of k given the graphs
- □ Recognize even and odd functions from their graphs and algebraic expressions

Vocabulary: vertical translation, horizontal translation, vertical stretch/compression, reflection

Transformations of f(x)			
Vertical Translations (shifts)	Example:		
Translation up k units y = f(x) + k	f(x) = x + 4 shifts 4 units		
Translation down k units y = f(x) - k	f(x) = x – 6 shifts 6 units		
Horizontal Translations (shifts)	Example:		
Translation right h units y = f(x - h)	f(x) = (x + 3) shifts 3 units to the		
Translation left <i>h</i> units y = f(x + h)	f(x) = x - 5 shifts 5 units to the		
Vertical Stretches and	Example:		
$\frac{Compressions/Shrinks}{Vertical Stretch, a > 1}{y = a \cdot f(x)}$	f(x) = 3x the graph by a factor of 3		
Vertical Compression (shrink), $0 < a < 1$ $y = a \cdot f(x)$	$f(x) = \frac{1}{4} x$ or the graph by a factor of $\frac{1}{4}$.		
Reflections (flips)	Example:		
In the x-axis	f(x) = - x + 5		
y = -f(x)	Flip about the -axis occurs if the		
	E is made negative.		
In the y-axis	f(x) = - x + 5		
y = f(-x)	Flip about the -axis occurs if O is made negative.		

Describing Transformations

5			
Example 1: Describe how the parent function $f(x) = x $ must be changed			
to graph the function $y = 2 x - 1 + 3$			
What has changed?	So what happens to the graph?		
✓ 2 is being	✓		
 ✓ - 1 is being 	✓		

✓

Example 3: Write the equation of the new function When it's Stretched/Shrunk:

To find the value of the multiplier, we need to create and solve an equation using the parent function Pick a point on the new graph and plug in the x and y coordinates to our new equation. We will use this to solve for our unknown, **u**. $y = ux^2$

3 is being

 \checkmark

Parent Function: $y = x^2$ (pink is new function)

Analyzing Linear Models

□ Interpret parts of an expression in real-world context

□ Write a function that describes the relationship between two quantities

Vocabulary: coefficient

Definitions			
A C is the number in front of the variable.			
Example 1: Name the coefficients of the following:			
y = 3x + 2	4x - 2y = 10	$\mathbf{y} = \mathbf{4x} - 2$	
Coefficient of X:	Coefficient of X:	Coefficient of X:	
Coefficient of Y:	Coefficient of Y:	Coefficient of Y:	

Writing Functions to Describe Relationships				
Example 2: Write an equation for the situation. Phillip bought a roll of				
raffle tickets for \$10. He will be selling 50-50 raffle tickets for \$1 each.				
How much money, m, will he make if he sells t tickets?				
Given: Find:				

Example 3: The number of boxes, **b**, in a warehouse is given by the equation **b** = **100d** + **800** where **d** represents the number of days gone by. What do the coefficients in the equation represent?

L	5	• •
	✓ What does the 100 mean?	✓ What does the 800 mean?

You Try It! Write an equation for each situation

1.) Shelly wants to buy Legos. She is told the cost, c, will be c = 7.35p + 5 where p represents the weight of her Lego purchase in pounds.

- a. What does the number 7.35 represent?
- b. What might the number 5 represent?

2.) Yahn is climbing a rope. His height, h, above the ground is given by the equation h = 10t + 2 where t represents time measured in minutes and h is measured in feet.
a. What does the number 10 represent?

b. What does the number 2 represent?

#9

Linear Programming

 $\hfill\square$ Represent constraints by equation or inequalities, and by systems of equations/inequalities

□ Interpret solutions as viable or nonviable options in a modeling context

Vocabulary: constraint, viable solution, nonviable solution

Definitions			
A C is a factor which restricts a system			
Example 1: List all constraints.	Example 2: List all constraints.		
For your rock collection display, you want to have at most 25 samples. You want to have at least three times as many sedimentary samples as metamorphic samples.	An exam has two sections; a multiple choice section and an essay section. You can score a maximum of 100 points. You must get at least 65 points on the essay to pass the course.		

You Try It! Identify all constraints

1.) Suppose you are buying two kinds of notebooks. A spiral notebook costs \$2 and a 3-ring binder costs \$5. You must have at least 6 notebooks. The cost of notebooks can be no more than \$20.

Checking for Viability					
A VS is a solution A NS is a solution which does not violate any constraints of a system					
Example 3: Given a list of constraints, tell whether a given solution is viable or not. If not, identify the constraint(s) which is/are not met					
Constraints: $-4x + 7y \ge 21$; $3x + 7y \le 28$ Solution: (2, 3)					

Text: 3.4

You Try It! Given a list of constraints, tell whether a given solution is viable or not. If not, identify the constraint(s) which is/are not met

2.) Constraints: -4x + 7y ≥ 21;

3x + 7y ≤ 28

Solution: (0, 4)

3.) Is the solution (3,1) viable with the following Constraints: $x \le 3$, $y \le 5$, $x + y \ge 1$